

GRAIN RAW MATERIALS AND THEIR CLASSIFICATION

Kurbanbaeva Gulshad

Karakalpak State University,

Assistant Professor Chemistry, Technology Department

Askarova Khurshida

Karakalpak State University,

Faculty of Chemical Technology, 2-A Student of Food Technology

Annotation

Cereals, including millet, contain all the nutrients that are constantly necessary for human life, including protein, starch, vitamins, carbohydrates, fat, destrin, mineral salts, oilcloth, hydrocarbons and other biologically active substances. In the current difficult conditions, rich in economic problems, a lot of work is being done to increase the acreage of grain crops and the cultivation of species adapted to various environmental conditions. This article provides information about the biological features of millet.

Keywords: millet, root, moisture, morphological , stem, variety, soil, temperature, g Alla, fragile, seed grain, flower, rhubarb, leaf, fruit, vitamin.

In Uzbekistan, millet is sown as a primary and secondary crop. Its importance is great when growing two grain crops per year. Especially the low rate of planting, precocity, the presence of a short-day plant further increase its cost. It can also be used to repair thinned grain fields. It yields high yields in the dry hot air of Central Asia. It is characterized by drought resistance, heat resistance among grain crops. Resistant to diseases and pests. History. Millet began to be grown 4-5 thousand years before our era. The center of origin and formation is East and Central Asia. Archaeological finds have proved that it has long been cultivated on the territory of present-day Uzbekistan and Kazakhstan. In world agriculture, the sown area of millet in 2004 amounted to 33.8 million hectares, yield-7.9 kg / ha, gross harvest-27.6 million tons. It is planted a lot in China, Afghanistan, Turkey and Europe. Also in the eastern states of the USA and in Africa cultivated. In Russia, Ukraine and the North Caucasus, millet occupies large

areas. Tariq yields 25-40 s/Ha in irrigated land in Uzbekistan and 7-15 s/Ha in lalmikorlik. When grown in angiz, the grain yield reaches 20-30 s/. [1]

Description of The Botanist. There are two distinct types of millet: common millet (*Panicum miliaceum L.*) and landing (*Setaria Italica L.*). A simple millet ball is a shawl, a spike-shaped shawl on a landing. Italian millet of landing (*S. italic a*) to two younger species. *italic a maxima A1* is a tall, growing season long, well-developed plant and *S. italic a mocharium Al.* - relatively low height, the growing season is divided into short mold. In Italian millet or landing, the tubers reach a length of 15-30 cm. It is widespread in Uzbekistan, Kazakhstan, Kavkazorti and is grown for its grain and green mass. Mold is planted mainly for cereals, sometimes hay or green food. The most common type is common millet. Common millet (*Panicum miliaceum L.*) is an annual crop. It has 5 youngest types: scattered, scattered, tigiz (bent), semi-com or oval and Com. The weight of 1000 grains of millet is 5-10 g, the grain has no furrow, no popilcha. Flower sawdust makes up 15-25% of the grain. When germinated, the seed produces 1 murtak Root, and the epicotile is developed.[1] the height of the STEM is 75-100 CM, the stems from the Bush node form branches (branch) from the ground upper branches of the stem. Forms 5-20 stems on one plant. Therefore, even when planted in wide rows, the number of stems 1 m² does not decrease. Root system-Poplar, spreading to the soil to a depth of 105 cm, around 115 cm. The number of lateral roots reaches 120.[2] the degree of development of the root system depends on the variety, applied agrotechnics. Secondary roots are formed from the bushy branch of the plant. The increase in root mass mainly lasts from the bushing to the roasting. Joint roots are formed when the soil surface layer dries up will not, the plant will develop poorly. Only millet with murtak roots will be in a semi-lying position. In germination-clumping, roots account for 20% of the total biomass, 34% in clump-clumping, and 30% in clump-clumping. After rooting, root development slows down, it stops coming to flowering. From the bottom of the stem, the roots of air are formed. They increase the plant's resistance to drought, lying down. The peculiarity of mastering the millet root system is less than that of oats and barley. It therefore produces high yields on newly acquired land. Biological properties. Seeds of millet begin to una at 8-10 °C and absorb 25% water compared to their own weight for embossing. At a temperature of 8 °C, seeds begin to germinate in 10-

15 days, at 15 °C in 4-5 days, at 20-25 °C in 3 days. When the temperature is 12-15 °C in the soil, the seeds germinate after 5-7 days. The Optimal temperature is 20-30 °C, at a very high temperature of 40 °C, the seeds stop germinating.

Waste from Mills, cereals and elevators is used as concentrated feed and ingredients. Production waste is different from cereals in that it is rich in high protein, fat, kletchatka and mineral substances. Some waste products (Bran, mill dust, fodder flour) are used primarily for feed purposes. A variety of wheat and rye, as well as Bran, which is formed by weighing ordinary flour, is an additive product. It consists of crushed pieces of grain shells of different sizes and Bud mixtures.

When processing wheat, depending on the type of flour weighing and the output of varietal flour, the amount of Bran can reach 9.5—18.5%, Rye-9.0% to 18%. It can contain a small or large amount of endosperms, and consequently, various amounts of kletchatka, as well as ash. Mill dust it is obtained from grinding wheat and rye. It consists of a mixture of powdery parts of the corn and bark. White and Gray Mill dust is used as feed.

Feed flour is formed when extracting cereals from various crop grains, or when pulling first-grade flour from wheat and rye. It consists of maggot parts, fruit and seed pods, partly murtak, and flower shell fragments if the flower is processed into shelled grains. Feed its amount can reach up to 5-20% depending on the type and variety of cereals obtained in relation to the weight of the grain that goes into production, and up to 6-15% when weighing flour from wheat and rye.

Grain waste is obtained when cleaning the grains of the main food crops from grain and polluting impurities at reception points, elevator, mill and grist mills. Omixta feed content is allowed to feed up to 60% of useful grain with grain waste. Useful grains contained in the waste are called basic crop grains and cereals that are part of the grain mixture. Their nutritional content varies significantly depending on the composition.

The maximum norm for the introduction of Mill, gruel plants and elevator waste into omixta feed will be at a value of up to 5-50%. Table 3 lists the nutrient content of some waste from mills and grist mills.

Wheat feed flour should have a normal smell and taste, and the color should be gray-malla, the acidity according to the method of rinsing should not exceed 5%,

the ash content is less than 3.5% and not higher than 4%, the moisture content does not exceed 15%, the amount of karakuya and karakasov separately or together from 0.05

no more; gorchak and vyazel should not exceed the same 0.04%, and therefore, in combination, damage with pests is not allowed. When grain waste is used in Omixta feed, the focus is on the amount of toxic impurities. Their amount should be determined for food and feed, and not exceed the values indicated in Table.

REFERENCES

- 1.L.I.Kropp, G.S.Genkin. Mezhozyaystvennie kombikormovie plant. M."Colossus", 1975.
- 2.A. N. Koshelev, J1, A.Glebov. Proizvodstvo kombikormov. M., "Colossus", 1981.
- 3.A.P.Maznik, Z.I.Treasure. Spravochnik po kombikormam. M., "Colossus", 1982.
- 4.N.P.Chernyaev. Technology kombikormovogo proizvodstva. M., "Agropromizdat", 1985.
- 5.JI.S.Komarova, B.V. Kasyanov. Kursovoe I diplomnoe proektirovanie po kombikormovomu proizvodstvu. M., "Agropromizdat", 1986.
- 5.L.I.Torzhinskaya, V.A.Yakovenko.Technochemichesky Kontrol khleboproduktov. M., "Agropromizdat", 1986.
- 6.G.A.Egorov. Technology Muki, Krupi I kombikormov. M., "Agropromizdat", 1987.
- 7.V.A.Butko veki Y, e. M . Mel n i ko V. Technology mukomolnogo, krupyainogo I kombikormovogo proizvodstva. M., "Agropromizdat", 1989,
- 8.Proektirovanie zernopererabativayutshix predpriatiy s osnovami CAD. M., "Agropromizdat", 1989.
- 9.P.N.Mionczynski, L .S. Kozharova. Proizvodstvo kombikormov. M., "Agropromizdat", 1991.
- 10.R.X.Hamraqulov.Feeding agricultural animals.Tashkent 2000.