

STUDYING THE NEMATODAFAUNAS OF HERBS OF OCTOPUS BIOTOPES

Boltayev Komil Sultonovich

B.F.n.(f.d) Sam is a Senior Lecturer in the Department of Microbiology, Virology and Immunology. Uzbekistan. Samarkand.

boltayevkomilsultonovich@gmail.com

Mamarasulova Nafisa Isrofilovna

He is a Lecturer in the Department of Microbiology, Virology and Immunology of Sam DTU. Uzbekistan. Samarkand.

nafisaisrofilovna@gmail.com

Jamalova Feruza Abdusalomovna

He is a Lecturer in the Department of Microbiology, Virology and Immunology of Sam DTU. Uzbekistan. Samarkand.

feruza.zhamalova@yandex.ru

Mahammadiyev Baxtiyor Faxriddin o'g'li

Tibbiy prophylactics colleges 303 gurug' talabasi.

Uzbekistan. Samarkand

Annotation:

The main purpose of our scientific article was to compare plants growing in akhtor bed biotopes, including the nematodafaunas of the circular chakanda, with the roots of wild sugar reeds growing in this biotope and the nematodafaunas around the roots (rheumatosis). It was demonstrated the degree of similarity and the differences between them and the intersection of cutters. All natijas obtained were calculated by the Mauntford generality indicator.

Keywords: phytonmatoda, rizosphere, phytogelmintology, herophilic, mesophilic, viruses, fungi, sugar cane, jumrusimon chakanda parasite nematodes, pathogen, Mauntford generality indicator.

A lot of work is being done in the field of phytogelminatology in Uzbekistan.

The main task of phytonematology is to study the interactions of plant and soil nematodes with various other organisms that are part of the soil biota.

Phytonmatodes are actively involved not only in the growth and development of cultural plants, but also in the transmission of diseases caused by a number of viruses, fungi and bacteria. At times, the damage done by phytogelments to agricultural crops is 20%.

Until now, many phytogelmintologists have studied the roots of too many plants and the contents of noise nematodes in the surrounding soil on a wide scale, but it was completely overlooked to examine the ecology of phytonmatodes in a complex state. It should be noted that most parasitic species phytonenematodes reduce the rate of growth of herbs, cause leaves to dry, and cause some species of plants to decrease sharply in these landscapes.

Material and Methods

The root part of the observed plants is Y.S. Kiryanova and E. L. Krallar (1969) was studied using his style.

Taking into account the morphological vision of plants, the physiological state of the plants, the soil, the temperature of the air, the humidity, irrigation methods, the variety of soil, and other factors.

One of the most effective methods of extraction of nematodes from plants and soils in phytogelminatology is the Berman methodology. The use of this method itself has its own layouts. According to this method, continuous micropreparations should be prepared to determine the types of nematodes.

On one side of the bpile mirror of regular micropreparations was written the name of the plant, the term xfarm, the sample period, and the name of the person who collected it. On the other hand, the name and gender of the species were recorded in the phytonmato.

All natijas obtained were calculated by the Mauntford generality indicator.

Results of the Study

Comparing the nematodes found in the soil of the roots and roots of wild sugar cane and jumrusimon chakanda plants, it was shown that there was a sharp difference between them. Wild sugar cane is recorded in 3,490 nematodes dating back to 64 species and 4,811 nematodes of 93 species in a circular

chakanda, including 37 species in total for both plants When calculated by the Mauntford generality indicator, he gave the following result:

$$J = \frac{2 \times 37}{2 \times 64 \times 93 - (64 + 93) \times 37} \times 1000 = 12,14$$

For wild sugar cane and jumrutsimon chakanda plants, the following species became common:

Criconemoides pullus, Aglenchus costatus, Filenchus orbus, Ditylenchus triformus, Aphelench avenae, Aphelenchoides dactylocercus, Aph. Parietinus, Aph. Sacchari, Aph. saprophilus, Aph. Scalacaudatus, Aph. subparietinus longicaudatus, P. rigidus, Heterocephalobus elongatus, E. oxyurooides, E. striatus. Acrobeloides labiatus, A. nanus, Acrobeles cylindricus, Cervidellus hamatus, Plectus parietinus, Prismatolaimus dolichurus, Mononchus truncates, Mesodorylaimus musae, Longidorella parva, Tylencholaimus proimus, Leptonichus obtusus, Aporcelaimellus obtusicaudatus, Eudorylaimus monohystera, E. muchabbatae, E. paracbtusicaudatus. Here are some of the results of a list of categories of nematodes encountered on the soil around the roots and roots of jumrutsimon plants: Wild from the Tylenchida category On the soil of sugar cane and its surrounding soil ,19 species were recorded in 767 nematodes (21.9%), 2546 nematodes (52.9%) of 34 species on the soil around the roots and roots of the jumrutsimon chakanda. *Rhabditida* records 1,500 nematodes (42.9%), 1737 nematodes (35.1%) of 32 species on the soil of the roots and roots of the wild sugar cane It was made. Representatives of the *Araeolamida* category are *Plectus parietinus* on the soil around the roots of the wild sugar reed, 7 nematodes (0.2%), and 21 nematodes related to 4 species on the soil around the roots of the chakanda (0.4%) was recorded. These are *plectus geophilus, P. parietinus, Proteroplectus inguirendus, Pr. Longicaudatus* , and *Rhabditida*'s descendants . The intermolecular force from all these filaments is enough to support more than the gicing of all these filaments is enough to support more than the gicing of pages across a globe! *Microlaimus* was found in 2 nematodes (0.04%) related to the type of *globiceps*. Representatives of the *Enoplida* category are 1 nematode (0.02%), *Prismatolaimus* on the soil around the roots of the wild sugar cane *Dolichurus, P.* 12 nematodes (0.2%) of the *intermedius* species were recorded. Among the representatives of the mononchida category are 8 nematodes (0.2%), and *mononchus truncatus, Clarus papillatus*, and

Mylonchulus found 11 nematodes (0.2%) of the species *lacustrius*. The roots of the bearded darnel become so intertwined with the roots of the wheat that to uproot them before harvest would result in a rectangular rectangle. has been identified. (Table 1)

Distribution of nematodes encountered in grassy plants in akktor net biotopes by category (1-jadval)

Turkumlar	Yovvoyi shakar qamish			Chakanda		
	end of tours	There's no such thing as Sony	% hi-sob-laydi	end of tours	There's no such thing as Sony	% hi-sob-laydi
1.Tylenchida	19	767	21,97	34	2564	52,92
2. Rhabditida	26	1500	42,97	32	1737	36,1
3. Aracolaimida	1	7	0,2	4	21	0,43
4. Chromadorida	–	–	–	1	2	0,04
5. Enoplida	1	1	0,02	2	12	0,24
6. Monanchida	1	8	0,22	2	11	0,22
7.Dorylaimida	16	1174	33,63	18	502	10,43
Jami:	64	3490	100	93	4811	100

Thus, on the soil around the roots and roots of the jumrutsimon chakanda, there are many representatives of the *Rhabditida* category, a small amount of wild sugar cane roots and roots are found on the soil, and representatives of the *Dorylaimida* category are much less common in wild sugar cane than in the chakanda.

Available Literature

1. Boltaev K.S., Zhamalova F.A. Nematode fauna of sugar beet households of Akdarya district of Samarkand region. Khorazm Ma'mun Akademiyasi Ahborotnomasi 7 (1), 37-39
2. Boltaev K.S., Zhamalova F.A., Mamarasulova N.I. Ecological grouping of nematodofauna of tugai plants. Bulletin of the Khorezm Academy Mamuna.No5 (79) 2021. 33-37 pp.

3. Nazarov P. A., Baleev D. N. et al. Infectious plant diseases: etiology, current state, problems and prospects of plant protection. ACTA NATURAE. VOL 12 No 3 (46) 2020
4. Rakhmatova M.U., Bekmuradov A.S. Results of the study of the distribution of the fauna of phytonematodes of pomegranate agroecosystems of the Surkhandarya region of Uzbekistan // Universum: chemistry and biology : electron. nauch. zhurn. 2018. № 11 (53).
5. Khurramov Sh.Kh. Nematodes of subtropical fruit cultures of Central Asia and measures to combat them // - Tashkent.: Fan. 2003. C. 1-333.
6. Boltayev K.S., Jamalova F.A., Mamarasulova N.I. A COMPARATIVE STUDY OF NEMATODA-FAUNA OF PASTURAL PLANTS IN FOREST BIOTOPES. Academicia Globe: Inderscience Research, 3 (05), 41–45. 2022
7. Rossouw J., van Rensburg L., Claassens S., van Rensburg P. J. Jansen. Nematodes as indicators of ecosystem development during platinum mine tailings reclamation. The Environmentalist. 2008. Vol. 28. Issue 2. P . 99–107.
8. Tomar V. V. S., Ahmad W. Food web diagnostics and functional diversity of soil inhabiting nematodes in a natural woodland. Helminthologia. Vol. 46, 2009. Issue 3. P
9. Vahidova A. M, Boltaev K. S., Jamalova F. A., Muratova Z. T., Bobokandova M. F. Nematodofauna of Retain Plants and Their Seasonal Dynamics. 2021.
10. Boltaev K.S., Zhamalova F.A., Mamarasulova N.I. Ecological grouping of nematodofauna of tugai plants. Vestnik Khorezmskogo akademii Mamuna. No5 (79) 2021. 33-37 p.
11. Zamotaylov A. S. Phytohelminthology: a course of lectures for training programs of scientific and pedagogical personnel in postgraduate studies – 35.06.01 Agriculture, orientation (profile) – Plant protection / comp.. – Krasnodar : KubGAU, 2015. – 70 p.
12. Rakhmatova M.U., Bekmuradov A.S. Results of studying the spread of fauna phytonematodes of pomegranate agroecosystems of Surkhandarya region of Uzbekistan // Universum: chemistry and biology : electron. nauch. zhurn. 2018. № 11 (53).
13. Khurramov Sh.Kh. Nematodes of subtropical fruit cultures of Central Asia and measures of struggle with them // - Tashkent.: Fan. 2003. C. 1-333.
14. Vahidova A. M, Boltaev K. S., Jamalova F. A., Muratova Z. T., Bobokandova M. F. Nematodofauna of Retain Plants and Their Seasonal Dynamics. 2021.

15. Rossouw J., van Rensburg L., Claassens S., van Rensburg P. J. Jansen. Nematodes as indicators of ecosystem development during platinum mine tailings reclamation. *The Environmentalist*. 2008. Vol. 28. Issue 2. P . 99–107.
16. Sultonovich, B. K., Abdusalomovna, J. F., Isrofilovna, M. N., Mansurovich, U. F., & Sultanovich, K. (2022). A COMPARATIVE STUDY OF NEMATODA-FAUNA OF PASTURAL PLANTS IN FOREST BIOTOPES. *Academicia Globe: Inderscience Research*, 3 (05), 41–45.
17. Sultonovich, B. K., Abdusalomovna, J. F., Isrofilovna, M. N., Mansurovich, U. F., & Sultanovich, K. (2022). A COMPARATIVE STUDY OF NEMATODA-FAUNA OF PASTURAL PLANTS IN FOREST BIOTOPES. *Academicia Globe: Inderscience Research*, 3 (05), 41–45.
18. Odilova G. etc. Serum IMMUNOGLOBULINS FOR SALMONELLA INFECTION IN CHILDREN //Eurasian Journal of Academic Research. – 2022. – T. 2. – №. 11. – S. 1197-1199.
19. Tomar V. V. S., Ahmad W. Food web diagnostics and functional diversity of soil inhabiting nematodes in a natural woodland. *Helminthologia*. Vol. 46, 2009.Issue 3. P
20. Azimovich A. U. B., Giyosovna S. D. Scientific and Methodological Journal of Interpretation and Research, 1(17), 257-260. – 2023.
21. Boltayev K. S., Jamalova F. A., Shodiyeva D. G. GOLDEN BRAIN, 1(3), 35–40. – 2023.
22. Odilova, G., Mamarasulova, N., Saidov, S., Turdiev, Sh., Kholboev, R., & Khamraev, G. (2022). Serum IMMUNOGLOBULINS IN SALMONELLA INFECTION IN CHILDREN. *Eurasian Journal of Academic Research*, 2(11), 1197-1199.
23. Nurimov P. B., Bobokandova M. F. Features of the development of somatotropic function of the pituitary gland and adrenal glands in adolescent boys // New Day in Medicine. – 2022. – No. 2. – P. 40.
24. Mammadov A., Odilova G. Frequency of detection of yeast-like fungi of the genus candida with associations of staphylococci // Eurasian Journal of Academic Research. – 2022. – T. 2. – No. 11. – P. 1098-1102.
25. Yuldashev S. Zh., Khuzhakulov D. A., Tashpulatov Sh. A. The state of external respiration in food botulism in children // Pediatrician. – 2017. – T. 8. – No. S.
26. Vahidova A. M., Khudayarova G. N., Boltayev K. S. Study of the microflora of the contents of echinococcal bubbles on the morphological ratio and

determination of its sensitivity to antibiotics // Academy. – 2020. – No. 7 (58). – P. 8-10.

27. Zhamalova F. A., Boltaev K. S., Chodieva D. G. PATHOGENS OF MYKOZOV SLEPNEY ON THE TERRITORY OF VARIOUS REGIONS OF UZBEKISTAN // GOLDEN BRAIN. – 2023. – Vol. 1. – No. 3. – P. 28-34.

28. Mukhamedov I. M., Yusupov M. I., Shaikulov Kh. Sh. DIFFERENTIAL DIAGNOSIS OF ENTEROCOLITIS IN CHILDREN // Innov. – 2022. – No. 2 (27). – P. 35-39.

29. Boltaev K. S., Mamedov A. N. Comparative study of ecological groups of hippohae rhamnoides Phytonematoids growing in the zarafshan oasis //Galaxy international interdisciplinary research journal. – 2021. – T. 9. – №. 9. – C. 101-104.

30. Odilova G. M. et al. Clinical features of the course of chickenpox in adults in modern climatic conditions // Voprosy nauki i obrazovanie. – 2019. – No. 28 (77). – P. 70-78.

31. Sh. H., Mamarasulova N. I. ANTIBIOTICS AND ANTIBIOTICS LACTOBACTERIA TOGETHER TO TREAT ESHERICHYOZ DISEASES IN CHILDREN. – 2023.

32. Sultonovich, B. K., Isrofilovna, M. N., Abdusalomovna, J. F., & Olimovna, O. P. (2022). A comparative study of nematoda facilities of shortage plants and trees in zarafshan forest biotopes. *Academicia Globe: Inderscience Research*, 3(5), 1-5.

33. Isrophilovna M. N., Daughter O. B. Q., Daughter S. M. R. ROLE OF ALLERGY IN PATHOGENESIS AND DIAGNOSTICS OF GUT INFECTIONS .—Scientific and Methodological Journal of Interpretation and Research. – 2023. – T. 1. – No. 17. – S. 252-256.

34. Davlyatova M. A., Mammadov A.N., Zhamalova F.A. CYTOMEGALOVIRUS INFECTION IN OBSTETRICS AND GYNECOLOGY // Eurasian Journal of Medical and Natural Sciences. – 2023. – T. 3. – No. 2 Part 2. – S. 26-35.

35. Rasulov S. K., Saidova F. S., Mammadov A. A. Epidemiology of intestinal parasitosis in childhoodInfection, immunity and pharmacology. – 2022.-No 1. P. 183-189.

36. Vakhidova A. M., Khudoyarova G. N., Khudzhanova M. A., Mamedov A. Immunorehabilitation of Patients with Echinococcosis, Complicated by the

Satellites of Echinococcal Cysts-Bacteria// International Journal of Virology and Molecular Biologi. – 2022. - № 11(1). P. 3-8.

37. Vakhidova A.M., Khudoyarova G.N., Mamedov A.N. The change in the concentration of phospholipids in experimental infection of lambs with echinococcosis and paecilomyces // World Bulletin of Public Health. – 2022. - № 7. P. 33-35.

38. Giyosovna, S. D., Maqsudovna, O. G., Isrofilovna, M. N., & Shodiyevich, S. H. (2023). BACILLUS AVLODIGA MANSUB BAKTERIYALARNING BIOTEXNOLOGIK POTENSIALI. Innovations in Technology and Science Education, 2(7), 1154-1162.