

THE BIBLE'S VIEWPOINT

Boltayev Komil Sultonovich

B.F.n.(f.d.) Sam is a senior lecturer in the Department of Microbiology, Virology and Immunology. Uzbekistan. Samarkand.

boltayevkomilsultonovich@gmail.com

Mamarasulova Nafisa Isrofilovna

He is a lecturer in the Department of Microbiology, Virology and Immunology of Sam DTU. Uzbekistan. Samarkand. nafisaisrofilovna@gmail.com

Jamalova Feruza Abdusalomovna

He is a lecturer in the Department of Microbiology, Virology and Immunology of Sam DTU. Uzbekistan. Samarkand. feruza.zhamalova@yandex.ru

Annotation:

The main objective of this scientific research is to compare the roots and roots of wild sugar reeds growing in the biotopes of the Valley of Zarephath to the nematodafaun of trees (black tomatoes) growing in this biotope, comparing the similarity levels. Also, when we compared the nematodes that we encountered in the soil of the root and the root atrophy of these plants, it turned out that there is a big difference between them from each other. The results were calculated by the Mauntford generality indicator.

Keywords: wild sugar cane, net, fauna, species, physiological, phytonmatoda, mesophilic, black tomatoes, Phytonmatology, parasite nematodes, pathogen, ecology, Mauntford generality indicator.

In the field of biology, systematics, fauna, parasites, research is being carried out in the country. The main task of the direction of phytonmatology is to study the role of plant and soil nematodes in biogeotsinozy and their interactions with various other organisms that are part of the soil biota.

To date, phytohelminthologists from foreign countries and the republic have studied the roots of many plants and the contents of nematodes living in the surrounding soil, but there has been no absolute emphasis on studying the ecology of phytonmatodes in a complex state. It is worth noting that many types of parasite phytonmatodes slow down the growth rate of the herbs, cause their

leaves to dry up, and can lead to the loss of certain species of phytosanitary species in these landscapes.

Material and Methods

The roots of the plants studied scientifically were overlooked in the style of Y.S. Kiryanova and E. L. Krall (1969).

When taking samples, the appearance, physiological condition, temperature of the soil and air, humidity, irrigation methods, soil variety and other factors are taken into account.

Phytogelmintology is one of the most convenient ways to distinguish nematodes from plants and soils and is a Berman styling. According to this method, the soil of the root and root atrophy of each plant obtained for inspection was analyzed separately - separately. To determine the type composition of nematodes, constant micropreparations are prepared.

Information about nematodes was written on both sides of regular micropreparations. On one side is the name of the plant, the term farm, the period from which the sample was taken, and the name of the person who collected it. On the other side, the phytonemato indicates the name and sex of the species.

Results of the Study

Comparing the same level of nematodes encountered in the soil around the roots and roots of wild sugar cane and black tomatoes, the following data was obtained: wild sugar was recorded in a total of 3,490 nematodes of 64 species on the roots and roots of the reed, while black tomatoes were identified in 4,053 nematodes dating back to 62 species. When we compared the similarity levels of these two plants to the Mauntford generality indicator, the following results were obtained:

$$J = \frac{2 \times 39}{2 \times 64 \times 62 - (64 + 62) \times 39} \times 1000 = 25,81$$

Wild sugar cane and 39 of the species it met were found to be generic, with a similarity rate of 25.81. For the soil around the roots and roots of wild sugar cane and black-and-white plants, the following species are common:

Criconemoides pullus, Aglenchus Agricola, Filenchus orbus, F. polyhypnus, Lelenchus, discerepans, Ditylenchus triformis, Aphelenchus avenae, Aphelenchoides parietinus, Protorhabditis xylocola, Mesorhabditis monhystera, Panagrolaimus armatus, P. lonicaudatus, P. subelongadus, Heterocephalobus

elongates, *H. latus*, *Cepnalobus parvus*, *Cephalobus persegnis*, *Eucephalobus mucronatus*, *Eucephalobus oxyuroides*, *Acobelodes labiatus*, *A. nanus*, *Acrobeles cylindricus*, *Ac. Ctenocephalus*, *Cervidellus hamatus*, *Prismatolaimus dolichurus*, *Mononchus truncates*, *Longidorella parva*, *Tylencholaimus proximus*, *Leptonchus obtusus*, *Aporcelaimellus obtusicaudatis*, *Paraxondvium lactificans*, *Eudorylaimus minutes*, *Alaimus jaulasali*.

When we compared the nematodafaunas of wild sugar cane and black-and-white plants by categories, it turned out that they differ sharply from each other. In the wild cane, 767 nematodes (21.9%) of the 19 species were identified in the Tylenchida category, while 1836 nematodes (45.2%) of 24 categories were recorded on the soil of the roots and roots of the black tomatoes. Rhabditida was found to be in 1,500 nematodes (42.9%) related to 26 species on wild sugar cane sleet and root atrophy soil, while black tomatoes were found in 989 nematodes (24.4%) related to 21 species

Among the representatives of the Araelaimida category, 7 nematodes (0.2%) of the plectus parie-tinus type were recorded in wild sugar cane. On the soil around the root of the black tomato, *Proteroplectus* is detected in 2 nematodes (0.04%) related to the longicaudatus type. Chromadorida did not meet representatives of the category, and black tolda was recorded in 872 nematodes (21.5%) related to the types of *ruricola*, *A. terricola*, *A. nax*, *Microlaimus dlobiceps*. In 1 nematode (0.02%) of the Enoplida species *Prismatolaimus dolichurus*, 5 nematodes (0.1%) were found on the soil around the roots of the wild sugar cane. Of the mononchida species, 8 (0.2%), 9 (0.2%) Of *mononchus truncatus* were recorded on the soil around the roots of the wild sugar cane. Among the representatives of the Dorylaimida category, 1,174 species of nematodes (33.6%), 11 species of black tomatoes 411 nematodes (11.4%) were identified on the soil around the roots and roots of the cane.

The abstract. Thus, on the soil around the roots and roots of the wild sugar cane, there are many representatives of the Rhabditida and Dorylaimida category, a small amount of black tomato roots and roots are found on the soil around them, and representatives of the Tylenchida category are relatively rare in black tomatoes.

Available Literature

1. Boltaev K. S., Zhamalova F. A. Nematode fauna of sugar beet households of Akdarya district of Samarkand region. Khorazm Ma'mun Akademiyasi Ahborotnomasi 7 (1), 37-39
2. Boltaev K.S., Zhamalova F.A., Mamarasulova N.I. Ecological grouping of nematodofauna of tugai plants. Bulletin of the Khorezm Academy Mamuna.No5 (79) 2021. 33-37 pp.
3. Nazarov P. A., Baleev D. N. et al. Infectious plant diseases: etiology, current state, problems and prospects of plant protection. ACTA NATURAE. VOL 12 No 3 (46) 2020
4. Rakhmatova M.U., Bekmuradov A.S. Results of the study of the distribution of the fauna of phytonematodes of pomegranate agrocenoses of the Surkhandarya region of Uzbekistan // Universum: chemistry and biology : electron. nauch. zhurn. 2018. № 11 (53).
5. Khurramov Sh.Kh. Nematodes of subtropical fruit cultures of Central Asia and measures to combat them // - Tashkent.: Fan. 2003. C. 1-333.
6. Boltayev K.S., Jamalova F.A., Mamarasulova N.I. A COMPARATIVE STUDY OF NEMATODA-FAUNA OF PASTURAL PLANTS IN FOREST BIOTOPES. Academicia Globe: Inderscience Research, 3 (05), 41–45. 2022
7. Rossouw J., van Rensburg L., Claassens S., van Rensburg P. J. Jansen. Nematodes as indicators of ecosystem development during platinum mine tailings reclamation. The Environmentalist. 2008. Vol. 28. Issue 2. P . 99–107.
8. Tomar V. V. S., Ahmad W. Food web diagnostics and functional diversity of soil inhabiting nematodes in a natural woodland. Helminthologia. Vol. 46, 2009.Issue 3. P
9. Vahidova A. M, Boltaev K. S., Jamalova F. A., Muratova Z. T., Bobokandova M. F. Nematodofauna of Retain Plants and Their Seasonal Dynamics. 2021.
10. Boltaev K.S., Zhamalova F.A., Mamarasulova N.I. Ecological grouping of nematodofauna of tugai plants. Vestnik Khorezmskogo akademii Mamuna.No5 (79) 2021. 33-37 p.
11. Zamotaylov A. S. Phytohelminthology: a course of lectures for training programs of scientific and pedagogical personnel in postgraduate studies – 35.06.01 Agriculture, orientation (profile) – Plant protection / comp.. – Krasnodar : KubGAU, 2015. – 70 p.
12. Rakhmatova M.U., Bekmuradov A.S. Results of studying the spread of fauna phytonematodes of pomegranate agrocenoses of Surkhandarya region of

Uzbekistan // Universum: chemistry and biology : electron. nauch. zhurn. 2018. № 11 (53).

13. Khurramov Sh.Kh. Nematodes of subtropical fruit cultures of Central Asia and measures of struggle with them // - Tashkent.: Fan. 2003. C. 1-333.
14. Vahidova A. M, Boltaev K. S., Jamalova F. A., Muratova Z. T., Bobokandova M. F. Nematodofauna of Retain Plants and Their Seasonal Dynamics. 2021.
15. Rossouw J., van Rensburg L., Claassens S., van Rensburg P. J. Jansen. Nematodes as indicators of ecosystem development during platinum mine tailings reclamation. The Environmentalist. 2008. Vol. 28. Issue 2. P . 99–107.
16. Sultonovich, B. K., Abdusalomovna, J. F., Isrofilovna, M. N., Mansurovich, U. F., & Sultanovich, K. (2022). A COMPARATIVE STUDY OF NEMATODA-FAUNA OF PASTURAL PLANTS IN FOREST BIOTOPES. Academicia Globe: Inderscience Research, 3 (05), 41–45.
17. Sultonovich, B. K., Abdusalomovna, J. F., Isrofilovna, M. N., Mansurovich, U. F., & Sultanovich, K. (2022). A COMPARATIVE STUDY OF NEMATODA-FAUNA OF PASTURAL PLANTS IN FOREST BIOTOPES. Academicia Globe: Inderscience Research, 3 (05), 41–45.
18. Odilova G. etc. Serum IMMUNOGLOBULINS FOR SALMONELLA INFECTION IN CHILDREN //Eurasian Journal of Academic Research. – 2022. – T. 2. – №. 11. – S. 1197-1199.
19. Tomar V. V. S., Ahmad W. Food web diagnostics and functional diversity of soil inhabiting nematodes in a natural woodland. Helminthologia. Vol. 46, 2009.Issue 3. P
20. Azimovich A. U. B., Giyosovna S. D. Scientific and Methodological Journal of Interpretation and Research, 1(17), 257-260. – 2023.
21. Boltayev K. S., Jamalova F. A., Shodiyeva D. G. GOLDEN BRAIN, 1(3), 35–40. – 2023.
22. Odilova, G., Mamarasulova, N., Saidov, S., Turdiev, Sh., Kholboev, R., & Khamraev, G. (2022). Serum IMMUNOGLOBULINS IN SALMONELLA INFECTION IN CHILDREN. Eurasian Journal of Academic Research, 2(11), 1197-1199.
23. Nurimov P. B., Bobokandova M. F. Features of the development of somatotropic function of the pituitary gland and adrenal glands in adolescent boys // New Day in Medicine. – 2022. – No. 2. – P. 40.

24. Mammadov A., Odilova G. Frequency of detection of yeast-like fungi of the genus candida with associations of staphylococci // Eurasian Journal of Academic Research. – 2022. – T. 2. – No. 11. – P. 1098-1102.

25. Yuldashev S. Zh., Khuzhakulov D. A., Tashpulatov Sh. A. The state of external respiration in food botulism in children // Pediatrician. – 2017. – T. 8. – No. S.

26. Vahidova A. M., Khudayarova G. N., Boltaev K. S. Study of the microflora of the contents of echinococcal bubbles on the morphological ratio and determination of its sensitivity to antibiotics // Academy. – 2020. – No. 7 (58). – P. 8-10.

27. Zhamalova F. A., Boltaev K. S., Chodieva D. G. PATHOGENS OF MYKOZOV SLEPNEY ON THE TERRITORY OF VARIOUS REGIONS OF UZBEKISTAN // GOLDEN BRAIN. – 2023. – Vol. 1. – No. 3. – P. 28-34.

28. Mukhamedov I. M., Yusupov M. I., Shaikulov Kh. Sh. DIFFERENTIAL DIAGNOSIS OF ENTEROCOLITIS IN CHILDREN // Innov. – 2022. – No. 2 (27). – P. 35-39.

29. Boltaev K. S., Mamedov A. N. Comparative study of ecological groups of hippohae rhamnoides Phytonematoids growing in the zarafshan oasis //Galaxy international interdisciplinary research journal. – 2021. – T. 9. – №. 9. – C. 101-104.

30. Odilova G. M. et al. Clinical features of the course of chickenpox in adults in modern climatic conditions // Voprosy nauki i obrazovanie. – 2019. – No. 28 (77). – P. 70-78.

31. Sh. H., Mamarasulova N. I. ANTIBIOTICS AND ANTIBIOTICS LACTOBACTERIA TOGETHER TO TREAT ESHERICHYOZ DISEASES IN CHILDREN. – 2023.

32. Sultonovich, B. K., Isrofilovna, M. N., Abdusalomovna, J. F., & Olimovna, O. P. (2022). A comparative study of nematoda facilities of shortage plants and trees in zarafshan forest biotopes. Academicia Globe: Inderscience Research, 3(5), 1-5.

33. Isrophilovna M. N., Daughter O. B. Q., Daughter S. M. R. ROLE OF ALLERGY IN PATHOGENESIS AND DIAGNOSTICS OF GUT INFECTIONS .—Scientific and Methodological Journal of Interpretation and Research. – 2023. – T. 1. – No. 17. – S. 252-256.

34. Davlyatova M. A., Mammadov A.N., Zhamalova F.A. CYTOMEGALOVIRUS INFECTION IN OBSTETRICS AND

GYNECOLOGY // Eurasian Journal of Medical and Natural Sciences. – 2023.

– T. 3. – No. 2 Part 2. – S. 26-35.

35. Rasulov S. K., Saidova F. S., Mammadov A. A. Epidemiology of intestinal parasitosis in childhoodInfection, immunity and pharmacology. – 2022.-No 1. P. 183-189.

36. Vakhidova A. M., Khudoyarova G. N., Khudzhanova M. A., Mamedov A. Immunorehabilitation of Patients with Echinococcosis, Complicated by the Satellites of Echinococcal Cysts-Bacteria// International Journal of Virology and Molecular Biologi. – 2022. - № 11(1). P. 3-8.

37. Vakhidova A.M., Khudoyarova G.N., Mamedov A.N. The change in the concentration of phospholipids in experimental infection of lambs with echinococcosis and paecilomyces // World Bulletin of Public Health. – 2022. - № 7. P. 33-35.

38. Giyosovna, S. D., Maqsudovna, O. G., Isrofilovna, M. N., & Shodiyevich, S. H. (2023). BACILLUS AVLODIGA MANSUB BAKTERIYALARNING BIOTEXNOLOGIK POTENSIALI. Innovations in Technology and Science Education, 2(7), 1154-1162.