

## THE INFLUENCE OF MECHANICAL DEFORMATION ON THE PROPERTIES OF FILMS (Bi<sub>0.25</sub> Sb<sub>0.75</sub>)<sub>2</sub> Te<sub>3</sub>

Siddiqov Rustamjon O'ktamovich  
sidrus 1073@mail.ru

Akbarov Adham Axadovich  
Kokand branch of Tashkent State Technical  
University named after Islam Karimov  
adhamakbar2@gmail.com

### Abstract:

The article presents discussions about the influence of cyclic deformations on the current-voltage characteristics of (Bi<sub>0.25</sub> Sb<sub>0.75</sub>)<sub>2</sub> Te<sub>3</sub> films and the use of strain gauges for measuring mechanical quantities.

**Key words:** semiconductor, cyclic deformation, voltage drop, strain gauge, strain sensitivity, current-voltage characteristic .

The use of automation elements in science and technology is associated, for the most part, with the measurement of non-electrical quantities and the transmission of measurement results over a distance. One of the many possibilities for using electrical methods to measure non-electrical quantities is the measurement of mechanical quantities. Currently, metal (wire, foil) and, especially, semiconductor strain gauges are widely used in measuring these quantities.

Currently, semiconductor strain gauges are made from monocrystalline and polycrystalline semiconductor material. Industry began to practice the use of semiconductor film strain gauges obtained by evaporation and condensation of a semiconductor in a vacuum.

From the point of view of the technical application of films as a strain-sensitive element, the current-voltage characteristic (VC) allows us to judge the energy capabilities of strain gauges, if by this we mean the maximum power that can be allocated to a strain gauge under given operating conditions. This is due to the fact that polycrystalline films of semiconductors are very sensitive to temperature changes, and when large currents are passed through film samples, their Joule heating can occur, which will correspondingly affect their operating

parameters, in particular, lead to a nonlinear current-voltage characteristic and thereby to increasing errors in instrument readings.

We studied the influence of static deformation on the I-V characteristics of the film in the range of relative deformations up to  $0.9 \cdot 10^{-3}$  rel. units, the corresponding curves are shown in Fig. 1. From them it is clear that the current-voltage characteristics of the samples are linear in the region of low voltages. With increasing voltage, the linearity of the dependence of current on voltage is violated, which occurs, for example, in the unstrained state at  $U = 5V$  (curve 4). This voltage, at which nonlinearity of the current-voltage characteristic occurs, significantly depends on the sign and level of deformation.

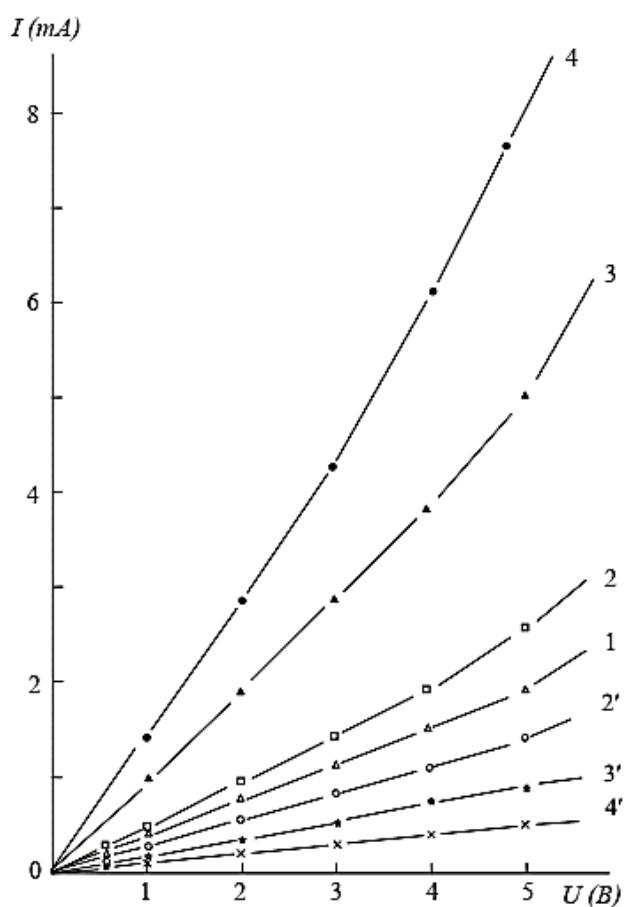



Figure 1. Current-voltage characteristic of the film  $(\text{Bi}_{0.25}\text{Sb}_{0.75})_2\text{Te}_3$  on a PM-I polyimide substrate, under the influence of static deformation:  $\varepsilon=0$  (curve 1). Curves 2-4 were taken under compression, and 2'-4' - under tension.

Studies of the current-voltage characteristics of  $(\text{Bi}_{0.25}\text{Sb}_{0.75})_2\text{Te}_3$  films subjected to CCPD are shown in Fig. 2. The figure shows that the current-voltage characteristics of the film change significantly after exposure to cyclic deformations ( $N=5 \cdot 10^5$ ). All curves taken at different values of relative

deformation clearly reflect the increase in film resistance. The action of  $N=5 \cdot 10^5$  cycles of alternating deformations leads to an increase in the voltage drop across the films at a constant source to almost 10 V, i.e. twice.

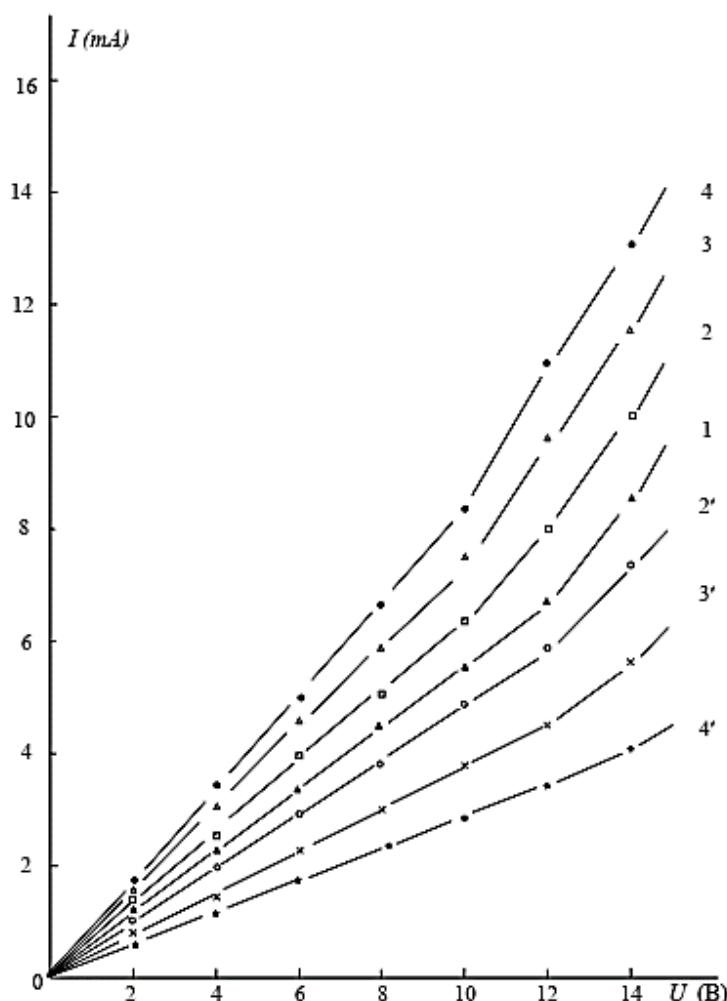



Figure 2. Current-voltage characteristics of the film  $(\text{Bi}_{0.25}\text{Sb}_{0.75})_2\text{Te}_3$  after exposure to  $N=5 \cdot 10^5$  cycles of alternating loads. Curves 1-4 and 2'-4' correspond to curves 1-4 and 2'-4' in Fig. 1.

Since under the action of cyclic deformations as a result of abrasion of the contacting surfaces of crystalline grains, the distances between them increase, this leads to an expansion of the linear section of the current-voltage characteristic of the film.

It is known that strain gauge measurements must be made in the linear region of the current-voltage characteristic. In this case, one should take into account the possibility of an error arising due to the fact that a rather large current can flow in the devices, which heats up the strain gauge and also causes the appearance of a section of nonlinear current-voltage characteristic. In this case, it is not the

nominal resistance that is measured, but the static one corresponding to a certain point of the current-voltage characteristic. To reduce the current through the strain gauge, an additional resistance can be switched on, previously measured with sufficient accuracy.

The measuring current through the strain gauge must be an order of magnitude lower than the current that causes a change in the mechanism of electrical conductivity in the film or heating of the strain gauge body. The magnitude of this current can be roughly determined from the current-voltage characteristic. Typically this is the current value where the current-voltage characteristic begins to deviate from a linear relationship.

## Literatures

1. Сиддиқов, Рустамжон. "ВЛИЯНИЕ ЦИКЛИЧЕСКИХ ДЕФОРМАЦИЙ НА ВОЛЬТ-АМПЕРНУЮ ХАРАКТЕРИСТИКУ ПЛЕНОК (В10, 25SB0, 75) 2ТЕ3." Models and methods in modern science 3.1 (2024): 201-206.
2. Сиддиқов, Рустамжон Ўқтамович, and Адхам Ахадович Акбаров. "Датчик давления на основе тензочувствительных элементов." Science Promotion 6.1 (2024): 200-205.
3. Сиддиқов, Рустамжон Ўқтамович. "Эффект пьезосопротивления в полупроводниках." Science Promotion 4.1 (2023): 457-462.
4. Сиддиқов, Рустамжон Ўқтамович. "ИНЖЕКЦИОННЫЙ ЛАЗЕР НА ГОМОПЕРЕХОДЕ." Conferencea (2023): 123-125.
5. Сиддиқов, Рустамжон Ўқтамович. "СОВРЕМЕННОЕ СОСТОЯНИЕ ИССЛЕДОВАНИЙ ФОТОРЕЗИСТИВНЫХ И ФОТОВОЛЬТАИЧЕСКИХ СВОЙСТВ ТОНКИХ ПЛЕНОК ХАЛЬКОГЕНИДОВ КАДМИЯ." Science and Education 2.3 (2021): 221-225.
6. Сиддиқов, Рустамжон Ўқтамович. "Люминесценция в полупроводниках." Science and Education 4.2 (2023): 810-815.
7. Сиддиқов, Рустамжон Ўқтамович. "УСЛОВИЕ ГЕНЕРАЦИИ СВЕТА В ПОЛУПРОВОДНИКОВЫХ ЛАЗЕРАХ." Uzbek Scholar Journal 16 (2023): 136-139.
8. O'ktamovich, Siddiqov Rustamjon. "Influence of mechanical deformation on photosensitivity properties of thin semiconductor

films." American Journal of Pedagogical and Educational Research 12 (2023): 242-244.

9. Сиддиқов, Рустамжон Ўқтамович. "Оптические переходы в полупроводниках." Science Promotion 1.1 (2023): 76-80.
10. Сиддиқов, Рустамжон Ўқтамович. "Физикавий масалаларни дифференциал тенгламалар ёрдамида ечиш." Science and Education 1.2 (2020): 158-161.
11. Siddiqov, Rustamjon O'ktamovich, and Abror Qahramonovich Asqarov. "Blox funksiyasining hisoblash usullari." Science and Education 3.4 (2022): 22-26.
12. Adhamjon, Akbarov, and Nurmatov Sardor. "METHODOLOGY OF GRAPHIC COMPETENCE DEVELOPMENT OF FUTURE ENGINEERS BASED ON AN INNOVATIVE APPROACH." American Journal of Technology and Applied Sciences 7 (2022): 10-12.
13. Эгамбердиев, Б. Э., and А. А. Акбаров. "Изучение профиля распределения никеля, имплантированного в кремний, и влияние отжига на структуру." Поверхность. Рентгеновские, синхротронные и нейтронные исследования 6 (2021): 80-84.
14. Egamberdievich, Egamberdiyev Bahrom, and Nurmatov NeSemiconductors. "Study Of Mechanisms Of Formation Of Silicides Of Cosi2 On Silicon Surface By Ion Implantation." Solid State Technology 63.6 (2020): 18640-18649.
15. O'ktamovich, Siddiqov Rasuljon, and Akbarov Adham Axadovich. "SILLIQ TURBULIZATORLI QUVIRLARDA ISSIQLIK ALMASHINISH JADALLIGINI TADQIQ ETISH." Science Promotion 1.1 (2023): 209-212.
16. Axadovich, Akbarov Adham. "Gidro-pnevmojuringichlarning mashinasozlikda, texnikaning rivojlanishida tutgan o'rni." Science Promotion 1.1 (2023): 213-218.
17. Abdusalom o'g'li, Asqarov Javohirbek. "Belgilanmagan hududlarni o'rganish: muhandislik grafikasini o'qitishda innovatsion tadqiqotlarni talab qiladigan sohalarni aniqlash." Science Promotion 2.2 (2023): 2-4.
18. Adhamjon, Akbarov, and Nurmatov Sardor. "METHODOLOGY OF GRAPHIC COMPETENCE DEVELOPMENT OF FUTURE

ENGINEERS BASED ON AN INNOVATIVE APPROACH." American Journal of Technology and Applied Sciences 7 (2022): 10-12.

19. Rapiqjon o‘g‘li, Xomidov Xushnudbek. "Study of operating parameters of drum dust cleaning device." HOLDERS OF REASON 4.1 (2024): 120-127.

20. Siddikov, R., and M. Amanbayev. "Main Characteristics and Space Structure of A Moving Industrial Robot." International Journal on Orange Technologies 3.12 (2021): 225-225.

21. Uktamovich, Siddikov Rasuljon, and Abdusattorov Axadjon. "WATER VAPOR, THERMODYNAMIC PARAMETERS OF EVAPORATION AND STEAM." European Journal of Interdisciplinary Research and Development 16 (2023): 348-351.

22. Uktamovich, Siddikov Rasuljon, and Abdusattorov Axadjon. "Convective Heat Exchange General Concepts." International Journal of Scientific Trends 2.6 (2023): 25-27.

23. Oktamovich, Siddikov Rasuljon, and Mirzayev Islombek Umarali. "Fuel, Application of the Composition of Fuel and its Effectiveness to Science." European Journal of Pedagogical Initiatives and Educational Practices 1.3 (2023): 23-24.

24. Uktamovich, Siddikov Rasuljon. "FUTURE OF WIND POWER PLANTS." Miasto Przyszłości 36 (2023): 318-320.

25. Uktamovich, Siddikov Rasuljon. "The Role of Atmosphere in Electric Current: How Air Pressure and Composition Affect Conductivity." Eurasian Journal of Engineering and Technology 19 (2023): 89-90.