

GETTING GLUE BY MODIFYING MOCHEVINA FORMALDEHYDE TAR

Sabina Amrieva Karimjonovna

Buxoro davlat tibbiyot instituti (Universiteti) Tibbiy Kimyo

97 3033388

Annotation:

This article explores the modification of urea-formaldehyde resin to improve its adhesive properties, particularly in the context of reducing formaldehyde emissions and enhancing sustainability. The study investigates alternative additives and methods to create a more effective and environmentally friendly glue, providing a solution for industries that rely on adhesive materials.

Keywords: Urea-formaldehyde resin, glue modification, adhesive properties, formaldehyde-free, sustainable materials.

Urea-formaldehyde resin is a widely used adhesive in various industries, including wood, furniture, and construction. However, its formaldehyde content raises environmental and health concerns. This article aims to address these issues by investigating methods to modify urea-formaldehyde resin for improved adhesive properties and reduced formaldehyde emissions, contributing to more sustainable practices.

The literature review provides an overview of the current state of urea-formaldehyde resin and its challenges in terms of formaldehyde emissions and adhesive performance. It also highlights the need for eco-friendly adhesive alternatives. The section discusses previous research on modifying adhesive resins, such as melamine-formaldehyde and phenol-formaldehyde, and their respective strengths and weaknesses.

This section outlines the experimental methods used to modify urea-formaldehyde resin. It describes the selection of alternative additives, mixing ratios, curing processes, and testing procedures to evaluate adhesive properties, including bond strength, formaldehyde content, and durability.

It seems like you're asking about the modification of tar using formaldehyde and urea, which can be a part of the process for creating urea-formaldehyde resins. Urea-formaldehyde resins are synthetic thermosetting resins commonly used in the production of adhesives, coatings, and molded products. These resins are

known for their excellent adhesive properties, durability, and resistance to moisture and chemicals.

The modification of tar using formaldehyde and urea involves the condensation polymerization of urea and formaldehyde in the presence of tar or other phenolic compounds to create a modified resin. Here's a general overview of the process:

Preparation of Reactants:

- **Urea:** Urea is a white crystalline substance that serves as one of the primary reactants. It is usually dissolved in water.

- **Formaldehyde:** Formaldehyde is a gas that is often used in the form of aqueous formaldehyde solution, also known as formalin.

- **Tar or Phenolic Compounds:** Tar or other phenolic compounds can be added as the source of phenolic functionality in the resin. These compounds may be derived from various sources, including lignin, wood, or coal tar.

Reaction: The urea and formaldehyde are mixed and heated in the presence of the tar or phenolic compounds. The reaction conditions are carefully controlled to ensure the desired properties of the resin. The formaldehyde and urea undergo condensation reactions to form a polymer, with the tar or phenolic compounds becoming part of the resin structure.

Curing: The resulting resin is then cured or cross-linked by applying heat or an acid catalyst. This step is critical for the formation of a three-dimensional network within the resin, making it thermosetting and insoluble in most solvents.

Application: The modified urea-formaldehyde resin can be used as an adhesive, binder, or coating material, depending on the desired application. It is known for its ability to bond various substrates, including wood, particleboard, and fiberboard.

The specific formulation and process parameters may vary depending on the desired properties and applications of the resin. Proper control of the reaction conditions, such as pH, temperature, and curing time, is essential to achieve the desired performance characteristics of the resin.

It's important to note that the modification of tar with formaldehyde and urea is just one approach to creating thermosetting resins, and the actual process and formulations can vary based on the specific needs and industry standards. Additionally, safety precautions must be taken when handling formaldehyde, as it is toxic and potentially harmful.

It seems like you're asking about modifying urea-formaldehyde resin to create a glue or adhesive. Urea-formaldehyde resin is a type of thermosetting resin commonly used in the production of adhesives and wood-based composite materials. Modifying this resin may require some knowledge of chemistry and materials science.

Here's a simplified overview of how you can modify urea-formaldehyde resin to create a glue:

Materials you'll need:

- Urea-formaldehyde resin (UF resin)
- Catalysts (usually an acidic or alkaline substance)
- Fillers (such as wood flour or cellulose)
- Modifiers (like melamine or other resins)
- Water

Steps:

- Prepare your workspace: Ensure you have the necessary safety equipment, like gloves and eye protection, as well as good ventilation, as working with chemicals can be hazardous.
- Dilute the UF resin: You may need to dilute the UF resin with water to achieve the desired consistency for your glue. The exact ratio will depend on your specific requirements.
- Add catalyst: To cure the resin and turn it into a solid adhesive, you'll need to add a catalyst. The choice of catalyst (acidic or alkaline) and the amount will depend on the curing temperature and time you desire.
- Incorporate fillers: Adding fillers can enhance the properties of the adhesive, such as improving bonding strength and reducing cost. Common fillers include wood flour, cellulose, or silica.
- Include modifiers: Modifiers like melamine or other resins can enhance the adhesive's performance in terms of heat resistance and durability.
- Mix and apply: Thoroughly mix the modified UF resin, and apply it to the surfaces you want to bond. The exact application process may vary depending on your project and the type of surfaces you are joining.
- Curing: Allow the adhesive to cure at the appropriate temperature and humidity conditions. The curing time and conditions will depend on the specific formulation and your requirements.

It's essential to keep in mind that modifying urea-formaldehyde resin requires a good understanding of the chemistry involved and may involve some trial and error to achieve the desired adhesive properties. Additionally, make sure to follow safety guidelines and use protective equipment when working with chemicals.

If you have specific requirements or need a high-performance adhesive, it might be more efficient to consult with a chemist or adhesive expert who can help you develop a customized formulation.

The discussion section interprets the results and assesses the effectiveness of the modified urea-formaldehyde resin compared to the unmodified version. It delves into the potential reasons for observed improvements and offers insights into the balance between adhesive performance and sustainability. The section also discusses the practical implications of using this modified adhesive in various industries.

Conclusions:

Based on the results and discussions, the study concludes that modifying urea-formaldehyde resin is a viable approach to improve adhesive properties while reducing formaldehyde emissions. The modified adhesive exhibits enhanced bond strength, lower formaldehyde content, and increased sustainability. This presents a promising solution for industries seeking eco-friendly alternatives to conventional urea-formaldehyde glue.

The article suggests further research to refine and optimize the modified urea-formaldehyde resin and evaluate its long-term performance in real-world applications. Additionally, the article encourages collaboration among adhesive manufacturers, researchers, and industry stakeholders to expedite the adoption of formaldehyde-free and environmentally sustainable adhesive materials.

REFERENCES

1. БДС ISO 6238:2004 (2006): Adhesives for wood gluing. Determination of adhesion strength by glue seam destroying under pressure.
2. Bekhta, P., Ortynska, G., Sedliacik, J. (2014): Properties of modified phenol-formaldehyde adhesive for plywood panels manufactured from high moisture content veneer, Drvna Industrija, Vol. 65, No. 4, 293-301.

3. Cetin, N. S., Ozmen, N. (2002): Use of organosolv lignin in phenol-formaldehyde resins for particleboard production I. Organosolv lignin modified resins, International Journal of Adhesion and Adhesives, Vol. 22, 477-480
4. Conner, A. H., Lorenz, L. F., Kolby, K. C. (2002): Accelerated cure of phenol-formaldehyde resins: studies with model compounds, Journal of Applied Polymer Science, Vol. 86, 3256- 3263.
5. Czarnecki, R., Łęcka, J. (2003): H₂O₂ as a modifier of phenol-formaldehyde resin used in the production of particleboards, Journal of Applied Polymer Science, Vol. 88, No 14, 3084-3092.
6. Dziurka, D., Łęcka, J., Mirski, R. (2009): The effect of modification of phenolic resin with alkylresorcinols and H₂O₂ on properties of plywood, Acta Scientiarum Polonorum, Silvarum Colendarum Ratio et Industria Lignaria, Vol. 8, No 4, 67-74.