

ABOUT THE MACHINERY

Mirzayev Islombok Umarali o'gli

Toshkent davlat texnika universiteti Qo'qon filyali 6-20 EEE gurux talabasi

Annotation:

Technology (techne) is a framework of tools and skills that allow humans to influence the environment in order to obtain material wealth and meet the needs of people and society. The main task is to facilitate human labor and improve productivity. It allows you to make the most of natural resources, to absorb the Earth's throes, the world's oceans, and the cosmic space.

Keywords: History goes back to the primitive society. Generally speaking, the history of T. can be divided into seven phases: 7—The creation of simple i.e. weapons and methods; 2 — The creation of more complex weapons and methods; 3 — creation of complex human-controlled labor weapons; 4 — Creation of machine T. in manufaktura i.e.; 5

Technology (techne) is a framework of tools and skills that allow humans to influence the environment in order to obtain material wealth and meet the needs of people and society. The main task is to facilitate human labor and improve productivity. It allows you to make the most of natural resources, to absorb the Earth's throes, the world's oceans, and the cosmic space. The term "T. " also refers to methods used in a work (craftsmanship) or art (e.g. studying T.si, ethics T.siGame of chess T.si etc.). (Matthew 24:14; 28:19, 20) Jehovah's Witnesses would be pleased to discuss these answers with you. The history of T. goes back to the primitive society. Generally speaking, the history of T. can be divided into seven phases: 7—The creation of simple i.e. weapons and methods; 2 — The creation of more complex weapons and methods; 3 — creation of complex human-controlled labor weapons; 4 — Creation of machine T. in manufaktura i.e.; 5 — The emergence of work machines based on today's engine in advanced countries; 6 — Creation of an electricity-based machine system; 7 — The development of an automated machinery system and cosmic T., the development of information technology (e.g. the Internet). The evolutionary phase of T. stretches farther. Stone weapons, later arrows, clay containers, stone axes, and copper weapons were developed in the indigenous community. Later (from 4 to

3,000 B.C.E.), weapons of mass destruction were formed. Iron later switched to melting and its use. In China, mile. Iron was known as early as 2357 B.C.E. Demand for robust labor weapons produces steel chigarish.ga brought it. As agriculture began to develop, water extraction devices and charcoal appeared. In addition to the bow of bullets, steel swords were used in military T. Later, various loading rods were invented in the construction. People learned to make boats from tree trunks to use water in order to make their roads close. Later, many osnian ships appeared. Textile software was created. In later times, craftsmanship flourished along with subsistence farming. Sailing ships, windmills were created. Heavy and light plugs with wheels appeared in the technique. During the 15th and 16th centuries, much-improved domna furnaces were built. Hydraulic machines were used in place of the main engine. During this time, mining and metallurgy began to flourish. In military T.C.E., ceasefire courses, machinery, and mechanisms emerged. The emergence of steam machines and textiles in the late 18th century was a reflection of the beginning of a revolution in the industry. In the 19th century, printing machines, telegraph apparatus, photography, internal travel engines, aircraft, radio, telephone, cinematography, automobiles were created, military equipment, railway transportation flourished, and in the 20th century electricity usage intensified, aviation, atomic engineering, computing technology, electronics, television, rocket engineering, automation, cosmonautics, and so on flourished. Beginning in the early 21st century, information technology (internet, cell phone, etc.) began to develop. Manufacturing and manufacturing T. depending on what task it performs. and not attending T.ga (Services, scientific research, education, and culture, military, and medical science). Production T. includes machinery, mechanisms, tools, machinery, technological processes, controlled apparatus, industrial buildings and buildings, roads, bridges, canals, transportation, communication, communications, and so on. The active part of the production T. is the machine. It consists of metalworking, construction, mountains, metallurgy, agriculture, textiles, food, paper preparation machines, and so on, transportation vehicles—automobiles, trays, airplanes, and so on, conveyor belts,

14:36

Elevators, cranes, and so on, control and computing machines—electric cars, internal combustion engines, turbines, and so on. Technology is a major factor in energy T. that serves to generate energy and convert it from one type to another. Military T. (tanks, artillery, rocket launchers, launchers, submarines, and so on) consists of a group of T. tools. T.ga maintenance T.si (laundry, kitchen machines, etc.); transportation T.si (passenger cars, bicycles

14:36

The era of development is characterized by the acceleration of the renewal of T. tools, the standardization and unification of items, radio, electronics, aviation, cosmonautics, automatic management and correction systems, computing T.si, information technology, and other developments. The development of automation in the industry has led to the creation of automatic lines and automatic sex, automatic zds, and the development of information technology. T.ni development is an important prerequisite for the development of science and technology. T.ni achievements are widely used in the development of the country. (Matthew 24:14; 28:19, 20) Jehovah's Witnesses would be pleased to answers with you. T. develops on the basis of fan achievements and puts new issues before the fan. Science and T. develop and prohibit the interconnection between them. The development of T. also depends on the geographical, climate, and so on. For example, shipbuilding, maritime and port works T.si in Great Britain, stationary, mountain and metallurgy T.si in Germany, electrical and radio electronics in Japan, fixed, instrument T.si in Switzerland, woodworking T.si in Finland, rocket engineering, cosmonautics, hydroelectricity, cybernetics, textile engineering, mechanical engineering, agriculture.machinery industries in the United States and Russia and other advanced. Major scientific and technological issues—man's flight to planets in the solar system, the development of radio, telegraph, telephone, and television communications worldwide, the creation of new types of medical apparatus and others—and the integration of fan achievements are required. Archimedes, A. Geron, I. Gutenberg, I. Fyodorov, X. Gyuygens, I. P. Kulibin, Leonardo da Vinci, N. Copernicus, G. Galililose, I. Newton, D. Watt, Ye. A. Cherepanov and M. Ye. Cherepanov, A. Nartov, P. P. Anosov, D. Stephenson, P. Shilling, B. Yakobi, S. Morze, M. Faraday, D. Maxwell, D. I. Mendeleyev, G. Bessemer, R. Diesel, A. F. Mojayskiy, V. Rentgen, A. Einstein, K. E. Siolkovsky, S. P. Korolyov, and

others contributed greatly. The development of T. in the East is such as Beroea, Ibn Sino, Greatbek, and Ahmad al-Farghani; Later, inventors such as I. F. Belyansky and V. P. Grabovsky (television), academics of the Academy of Sciences in the country, S. Azimov, R. Bekjanov, A. Vohidov, H. Rakhmatullin, O. It is related to the names of Rasulov, T. Rashidov, H. Ottomanxojeev, H. Fozilov, M. Orozbayev, B. Gobulov, P. Habibullayev, M. Hamidorov, M. Mayliova, and other scholars.